Synthesis and Crystal Structure of Triscyclopentadienyl(triphenyltin)uranium.

The First Example of a Uranium–Tin Bond

M. Porchia,^a U. Casellato,^a F. Ossola,^a G. Rossetto,^a P. Zanella,^a and R. Graziani^b

Istituto di Chimica e Tecnologia dei Radioelementi C.N.R., Corso Stati Uniti, 35100 Padova, Italy
Dipartimento di Chimica Inorganica Metallorganica ed Analitica, Università di Padova, Via Loredan 4, 35100
Padova, Italy

The uranium–tin complex $(cp)_3U$ –SnPh₃ (cp = η^5 -C₅H₅) has been prepared from $(cp)_3UNEt_2$ and HSnPh₃, and its crystal structure determined; it provides the first example of a compound with a uranium–tin bond.

The organometallic chemistry of actinoid elements has developed widely during last decade, but no compounds unequivocally containing uranium-metal bonds have been described until now.¹ Structurally characterized complexes containing both direct² and bridged³ Th-(d metal) bonds have recently

Figure 1. Crystal structure of (cp)₃USnPh₃, composed of monomeric

Figure 1. Crystal structure of $(cp)_3 \cup SnPh_3$, composed of monometric dinuclear molecules with a direct U–Sn bond of 3.166(1) Å. Both metal ions are four-co-ordinate (considering the cp centroids) in a distorted tetrahedral arrangement. The U–C bond lengths are in the range 2.68–2.79 Å; mean Sn–C distance 2.21 Å. been reported, and this prompted us to publish our preliminary data concerning the synthesis and structural characterization of $(cp)_3USnPh_3$ ($cp = \eta^5 \cdot C_5H_5$).

Reaction of $(cp)_3 UNEt_2^4$ with a small excess of HSnPh₃ in toluene solution at room temperature gave a brown powder almost quantitatively after removal of solvent. After washing with n-hexane it gave satisfactory elemental analyses.[†] The reaction (1) proved to be a more suitable preparative method than others attempted, *i.e.* reaction of $(cp)_3 UMe$ or $(cp)_3 UBH_4$ with HSnPh₃ and of $(cp)_3 UCl$ with LiSnPh₃, which appeared to be too slow or complicated by formation of other inseparable products. Similar experiments carried out with HSnBu₃ were unsuccessful.

$$(cp)_3UNEt_2 + HSnPh_3 \rightarrow (cp)_3USnPh_3 + HNEt_2$$
 (1)

The brown $(cp)_3USnPh_3$ dissolves in benzene or toluene giving a reasonably stable bright green solution, while in diethyl ether or tetrahydrofuran fast reaction with solvent occurs. The complex is stable at room temperature but decomposes at 60-70 °C. Crystals suitable for an X-ray

[†] ¹H N.m.r. (C₆D₆, 27 °C, C₆D₅H internal standard 7.2 p.p.m. from SiMe₄): δ 10.8 (15H, s, cp), 13.5 (6H, br. d), and 2.9 (9H, m). ¹¹⁹Sn-H coupling was not observed. I.r. (Nujol, in KBr discs) v_{max} . 1010, 790 (cp), 1570, 1060, 700, and 730 cm⁻¹ (Ph). Under our conditions, the i.r. spectrum did not give any information about U–Sn stretching frequencies. The mass spectrum did not show M^+ ions; the most intense peak was at m/z 350 (SnPh₃⁺); other intense peaks: m/z 700 (Sn₂Ph₆⁺), 623 (Sn₂Ph₅⁺), 546 (Sn₂Ph₄⁺), 433 (cp₃U⁺), and 368 (cp₂U⁺).

structure determination[‡] were obtained by addition of cooled n-hexane to a saturated solution in toluene. The structure (Figure 1) consists of two pseudo-tetrahedral groups [(cp)₃U– Sn and Ph₃Sn–U]. Angles and Sn–C_{Ph} and U–C_{cp} bond lengths are typical of Ph₃Sn⁵ and (cp)₃U⁶ moieties. The main feature is the U–Sn bond length of 3.166 Å, comparable with those in other Ph₃Sn–(d metal) compounds⁷ if the larger size of the uranium atom is taken into account.

We are indebted to F. Braga and S. Garon for assistance.

Received, 3rd February 1986; Com. 143

Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1, 1986.

References

- T. J. Marks and R. D. Ernst, in 'Comprehensive Organometallic Chemistry,' eds G. Wilkinson, F. G. A. Stone, and E. W. Abel, Pergamon, Oxford, 1982. The shortest U-U non-interactive distance is 3.576 Å (F. A. Cotton, D. O. Marler, and W. Schwotzer, *Inorg. Chim. Acta*, 1984, **85**, L31) while a U-U bond has been suggested for the complex U₆O₄(OH)₄(SO₄)₆, U-U distance 3.85 Å (G. Lundgren, *Ark. Kemi*, 1953, **5**, 247, quoted by V. Gutmarnn, 'Halogen Chemistry,' Academic Press, New York, 1967, vol. 3, p. 49).
- 2 R. S. Sternal, C. P. Brock, and T. J. Marks, J. Am. Chem. Soc., 1985, 107, 8270.
- 3 J. M. Ritchey, A. J. Zozulin, D. A. Wroblevski, R. R. Ryan, H. J. Wasserman, D. C. Moody, and R. T. Paine, *J. Am. Chem. Soc.*, 1985, **107**, 501.
- 4 F. Ossola, G. Rossetto, P. Zanella, G. Paolucci, and R. D. Fischer, J. Organomet. Chem., submitted for publication.
- 5 Yu. V. Skripkin, O. G. Volkov, A. A. Pasynskii, A. S. Antsyshkina, L. M. Dikareva, V. N. Ostrikova, M. A. Porai-Koshits, S. L. Davydova, and S. G. Sakharov, J. Organomet. Chem., 1984, 263, 345.
- 6 R. E. Cramer, R. B. Maynard, J. C. Paw, and J. W. Gilje, *Organometallics*, 1983, 2, 1336.
- 7 D. E. Fenton and J. J. Zuckerman, J. Am. Chem. Soc., 1968, 90, 6226; V. K. Belsky, A. N. Protsky, J. V. Molodnitskaya, B. M. Bulychev, and G. L. Soloveichik, J. Organomet. Chem., 1985, 293, 69.

[‡] Crystal data: $C_{33}H_{30}SnU$, M = 783.4, orthorhombic, space group Pbca, a = 19.000(5), b = 18.195(4), c = 16.084(5) Å, U = 5560(2) Å³, $D_c = 1.84$ g cm⁻³ for Z = 8. A total of 8857 reflexions were recorded to $\theta = 25^{\circ}$ on a Philips PW 1100 diffractometer with Mo- K_{α} radiation ($\lambda 0.71069$ Å). The intensities were corrected for Lorentz-polarisation and for absorption. The structure was solved by standard methods and refined to R = 0.051 for the 2862 observed reflexions $[I > 3\sigma(I)]$. The ring atoms were refined as rigid bodies.